
Chapter 6

IC Manual

Interactive C (IC for short) is a C language consisting of a compiler (with interactive

command-line compilation and debugging) and a run-time machine language module.

IC implements a subset of C including control structures (for, while, if, else), local

and global variables, arrays, pointers, structures, 16-bit and 32-bit integers, and 32-bit

oating point numbers.

IC works by compiling into pseudo-code for a custom stack machine, rather than

compiling directly into native code for a particular processor. This pseudo-code (or

p-code) is then interpreted by the run-time machine language program. This unusual

approach to compiler design allows IC to o�er the following design tradeo�s:

� Interpreted execution that allows run-time error checking. For example, IC

does array bounds checking at run-time to protect against some programming

errors.

� Ease of design. Writing a compiler for a stack machine is signi�cantly eas-

ier than writing one for a typical processor. Since IC's p-code is machine-

independent, porting IC to another processor entails rewriting the p-code inter-

preter, rather than changing the compiler.

� Small object code. Stack machine code tends to be smaller than a native

code representation.

� Multi-tasking. Because the pseudo-code is fully stack-based, a process's state

is de�ned solely by its stack and its program counter. It is thus easy to task-

switch simply by loading a new stack pointer and program counter. This task-

switching is handled by the run-time module, not by the compiler.

Since IC's ultimate performance is limited by the fact that its output p-code is

interpreted, these advantages are taken at the expense of raw execution speed.

119

120 CHAPTER 6. IC MANUAL

IC was designed and implemented by Randy Sargent with the assistance of

Fred Martin. This year many modi�cations were made by Anne Wright.

This is the �rst year that pre-processing, structures, multi-dimensional

arrays, and initialized persistents have been available.

6.1 Getting Started

This section describes how to boot IC on the 6.270 board using the MIT Athena

computer network. Commands that are typed to the computer are shown underlined

for visibility.

1. Add the 6.270 directory to the execution path. Type the following

command at the Unix prompt:

add 6.270

2. Plug the board into the computer. Using the modular phone cable, plug

the modi�ed end into the DEC or VAX's printer port (indicated by an icon of a

computer printer). Make sure that the exposed wires of the plug are facing up.
If using the VAX2000 computer, use the 9-pin plug adapter.

Plug the other end into the modular jack on the 6811 board. Before the board
is turned on, check that the board's green LED (labelled ser rcv) is lit. If it

is not lit, there is a problem with the connection.

3. Initialize the board. The �rst step is using IC is to load the run-time module

(called the \p-code program") into the board. If the p-code is already loaded,

this step may be skipped. If not:

� Switch the board on. Do not hit the reset button at this time. When the

board is switched on, the yellow LED (labelled ser xmit) should
ash

brie
y and then stay o�. If the yellow LED is lit, the board is not ready to
be initialized. Turn the board o� and on and try again.

� From the Unix prompt, type

init bd

A process should begin that downloads the p-code program to the board.

This will take about 15 to 30 seconds to complete. If the program exits

with an error message, check the connection and try again.

4. Reset the board. Press the reset button on the board to reset it. The following

should happen:

(a) The board will emit a brief beep;

6.2. USING IC 121

(b) A version message will be printed on the LCD screen (e.g., \IC vX.XX");

(c) The yellow LED will turn on brightly.

If these things do not happen, repeat step 3 to initialize the board.

5. Begin IC. From the Unix prompt, type:

IC

At this point, IC will boot, ready to load a C program or evaluate expressions

typed to the IC prompt.

6.2 Using IC

IC is started from the Unix shell by typing ic at the prompt. Some Unix systems

(in particular, MIT Athena DECstations) have an unrelated application named ic.

If this application is �rst in the execution path, it will be invoked rather than the

IC compiler. This situation may be remedied by reordering the execution path to

include the path to the IC compiler �rst, or by using the program name icc, which

will also invoke IC.

IC can be started with the name (or names) of a C �le to compile.

When running and attached to a 6811 system, C expressions, function calls, and

IC commands may be typed at the \C>" prompt.

All C expressions must be ended with a semicolon. For example, to evaluate the

arithmetic expression 1 + 2, type the following:

C> 1 + 2;

When this expression is typed, it is compiled by the console computer and then

downloaded to the 6811 system for evaluation. The 6811 then evaluates the compiled

form and returns the result, which is printed on the console computer's screen.

To evaluate a series of expressions, create a C block by beginning with an open

curly brace \{" and ending with a close curly brace \}". The following example

creates a local variable i and prints the sum i+7 to the 6811's LCD screen:

C> fint i=3; printf("%d", i+7);g

122 CHAPTER 6. IC MANUAL

6.2.1 IC Commands

IC responds to the following commands:

� Load �le. The command load <�lename> compiles and loads the named �le.

The board must be attached for this to work. IC looks �rst in the local directory

and then in the IC library path for �les.

Several �les may be loaded into IC at once, allowing programs to be de�ned in

multiple �les.

� Unload �le. The command unload < �lename > unloads the named �le, and

re-downloads remaining �les.

� List �les, functions, or globals. The command list files displays the

names of all �les presently loaded into IC. The command list functions dis-

plays the names of presently de�ned C functions. The command list globals

displays the names of all currently de�ned global variables.

� Kill all processes. The command kill all kills all currently running pro-

cesses.

� Print process status. The command ps prints the status of currently running

processes.

� Edit a �le. The command edit <�lename> brings up a system editor to

allow editing of a �le. This command is most useful on single-tasking operating

systems, like MS-DOS.

� Run an inferior shell. If IC is running on a MS-DOS system, this command

opens a shell to execute MS-DOS functions.

� Help. The command help displays a help screen of IC commands.

� Quit. The command quit exits IC. ctrl-C can also be used.

6.2.2 Line Editing

IC has a built-in line editor and command history, allowing editing and re-use of

previously typed statements and commands. The mnemonics for these functions are

based on standard Emacs control key assignments.

To scan forward and backward in the command history, type ctrl-P or " for

backward, and ctrl-N or # for forward.

6.3. A QUICK C TUTORIAL 123

An earlier line in the command history can be retrieved by typing the exclamation

point followed by the �rst few characters of the line to retrieve, and then the space

bar.

Figure 6.1 shows the keystroke mappings understood by IC.

Keystroke Function

del backward-delete-char

ctrl-A beginning-of-line

ctrl-B backward-char

 backward-char

ctrl-D delete-char

ctrl-E end-of-line

ctrl-F forward-char

! forward-char

ctrl-K kill-line

ctrl-U universal-argument

esc D kill-word

esc del backward-kill-word

Figure 6.1: IC Command-Line Keystroke Mappings

IC does parenthesis-balance-highlighting as expressions are typed.

6.2.3 The main() Function

After functions have been downloaded to the board, they can be invoked from the IC

prompt. If one of the functions is named main(), it will automatically be run when

the board is reset.

To reset with board without running the main() function (for instance, when

hooking the board back to the computer), hold down one of the two user input

buttons on the board while pressing reset. The board will reset without running

main().

6.3 A Quick C Tutorial

Most C programs consist of function de�nitions and data structures. Here is a simple

C program that de�nes a single function, called main.

124 CHAPTER 6. IC MANUAL

void main()
{

printf("Hello, world!\n");
}

All functions must have a return value; that is, the value that they return when

they �nish execution. main has a return value type of void, which is the \null" type.

Other types include integers (int) and
oating point numbers (float). This function

declaration information must precede each function de�nition.

Immediately following the function declaration is the function's name (in this case,

main). Next, in parentheses, are any arguments (or inputs) to the function. main has

none, but a empty set of parentheses is still required.

After the function arguments is an open curly-brace \f". This signi�es the start

of the actual function code. Curly-braces signify program blocks, or chunks of code.
Next comes a series of C statements. Statements demand that some action be

taken. Our demonstration program has a single statement, a printf (formatted

print). This will print the message \Hello, world!" to the LCD display. The \n

indicates end-of-line.

The printf statement ends with a semicolon (\;"). All C statements must be

ended by a semicolon. Beginning C programmers commonly make the error of omit-

ting the semicolon that is required at the end of each statement.

The main function is ended by the close curly-brace \g".

Let's look at an another example to learn some more features of C. The following

code de�nes the function square, which returns the mathematical square of a number.

int square(int n)
{

return(n * n);
}

The function is declared as type int, which means that it will return an integer

value. Next comes the function name square, followed by its argument list in paren-

thesis. square has one argument, n, which is an integer. Notice how declaring the

type of the argument is done similarly to declaring the type of the function.

When a function has arguments declared, those argument variables are valid

within the \scope" of the function (i.e., they only have meaning within the func-

tion's own code). Other functions may use the same variable names independently.

The code for square is contained within the set of curly braces. In fact, it consists

of a single statement: the return statement. The return statement exits the function

and returns the value of the C expression that follows it (in this case \n * n").

Expressions are evaluated according set of precendence rules depending on the

various operations within the expression. In this case, there is only one operation

(multiplication), signi�ed by the *", so precedence is not an issue.

6.4. VARIABLES, CONSTANTS, AND DATA TYPES 125

Let's look at an example of a function that performs a function call to the square

program.

float hypotenuse(int a, int b)
{

float h;

h = sqrt((float)(square(a) + square(b)));

return h;
}

This code demonstrates several more features of C. First, notice that the
oating

point variable h is de�ned at the beginning of the hypotenuse function. In general,

whenever a new program block (indicated by a set of curly braces) is begun, new local

variables may be de�ned.

The value of h is set to the result of a call to the sqrt function. It turns out that

sqrt is a built-in function that takes a
oating point number as its argument.

We want to use the square function we de�ned earlier, which returns its result as

an integer. But the sqrt function requires a
oating point argument. We get around

this type incompatibility by coercing the integer sum (square(a) + square(b)) into

a
oat by preceding it with the desired type, in parentheses. Thus, the integer sum

is made into a
oating point number and passed along to sqrt.

The hypotenuse function �nishes by returning the value of h.

This concludes the brief C tutorial.

6.4 Variables, Constants, and Data Types

Variables and constants are the basic data objects in a C program. Declarations list

the variables to be used, state what type they are, and may set their initial value.

6.4.1 Variables

Variable names are case-sensitive. The underscore character is allowed and is often

used to enhance the readability of long variable names. C keywords like if, while,

etc. may not be used as variable names.

Global variables and functions may not have the same name. In addition, local

variables named the same as globals or functions prevent the use of that function

within the scope of the local variable.

126 CHAPTER 6. IC MANUAL

Declaration

In C, variables can be declared at the start of each block (a functional unit of code

surrounded by curly braces). In general, a variable declaration is of the form:

<type> <variable name>;

or

<type> <variable name>=<initialization data>;

<type> can be int, long, float, char, or struct <struct name> and de-

termines the primary type of the variable declared. This form changes somewhat when

dealing with pointer and array declarations, which are explained in a later section,

but in general this is the way you declare variables.

Local and Global Scopes

If a variable is declared within a function, or as an argument to a function, its binding

is local, meaning that the variable has existence only within that function de�nition.

If a variable is declared outside of a function, it is a global variable. It is de�ned

for all functions, including functions which are de�ned in �les other than the one in

which the global variable was declared.

Variable Initialization

Local and global variables can be initialized to a value when they are declared. If no

initialization value is given, the variable is initialized to zero.

All global variable declarations must be initialized to constant values. Local vari-

ables may be initialized to the value of arbitrary expressions including any globals,

function calls, function arguments, or locals which have already been initialized.
Here is a small example of how initialized declarations are used.

int i=50; /* declare i as global integer -- initial value 50 */
long j=100L; /* declare j as global long -- initial value 100 */
int foo()
{

int x; /* declare x as local integer with initial value 0 */
long y=j; /* declare y as local integer with initial value j */

}

Local variables are initialized whenever the function containing them runs.

Global variables are initialized whenever a reset condition occurs. Reset conditions

occur when:

1. Code is downloaded;

2. The main() procedure is run;

3. System hardware reset occurs.

6.4. VARIABLES, CONSTANTS, AND DATA TYPES 127

Persistent Global Variables

A special persistent form of global variable, has been implemented for IC . A persistent

global may be initialized just like any other global, but its value is only initialized

when the code is downloaded and not on any other reset conditions. If no initialization

information is included for a persistent its value will be initialized to zero on download,

but left unchanged on all other reset conditions.

To make a persistent global variable, pre�x the type speci�er with the key word

persistent. For example, the statement

persistent int i=500;

creates a global integer called i with the initial value 500.

Persistent variables keep their state when the robot is turned o� and on, when

main is run, and when system reset occurs. Persistent variables will lose their state

when code is downloaded as a result of loading or unloading a �le. However, it is

possible to read the values of your persistents in IC if you are still running the same

IC session from which the code was downloaded. In this manner you could read the

�nal values of calibration persistents, for example, and modify the initial values given

to those persistents appropriately.

Persistent variables were created with two applications in mind:

� Calibration and con�guration values that do not need to be re-calculated on

every reset condition.

� Robot learning algorithms that might occur over a period when the robot is

turned on and o�.

6.4.2 Constants

Integers

Integers constants may be de�ned in decimal integer format (e.g., 4053 or -1), hex-

adecimal format using the \0x" pre�x (e.g., 0x1fff), and a non-standard but useful

binary format using the \0b" pre�x (e.g., 0b1001001). Octal constants using the zero

pre�x are not supported.

Long Integers

Long integer constants are created by appending the su�x \l" or \L" (upper- or

lower-case alphabetic L) to a decimal integer. For example, 0L is the long zero.

Either the upper or lower-case \L" may be used, but upper-case is the convention for

readability.

128 CHAPTER 6. IC MANUAL

Floating Point Numbers

Floating point numbers may use exponential notation (e.g., \10e3" or \10E3") or

must contain the decimal period. For example, the
oating point zero can be given

as \0.", \0.0", or \0E1", but not as just \0".

Characters and Character Strings

Quoted characters return their ASCII value (e.g., 'x').

Character string constants are de�ned with quotation marks, e.g., "This is a

character string.".

NULL

The special constant NULL has the value of zero and can be assigned to and compared

to pointer or array variables (which will be described in later sections). In general,

you cannot convert other constants to be of a pointer type, so there are many times

when NULL can be useful.

For example, in order to check if a pointer has been initialized you could compare

its value to NULL and not try to access its contents if it was NULL. Also, if you had

a de�ned a linked list type consisting of a value and a pointer to the next element,

you could look for the end of the list by comparing the next pointer to NULL.

6.4.3 Data Types

IC supports the following data types:

16-bit Integers 16-bit integers are signi�ed by the type indicator int. They are

signed integers, and may be valued from �32,768 to +32,767 decimal.

32-bit Integers 32-bit integers are signi�ed by the type indicator long. They are

signed integers, and may be valued from �2,147,483,648 to +2,147,483,647 decimal.

32-bit Floating Point Numbers Floating point numbers are signi�ed by the type

indicator float. They have approximately seven decimal digits of precision and are

valued from about 10�38 to 1038.

8-bit Characters Characters are an 8-bit number signi�ed by the type indicator

char. A character's value typically represents a printable symbol using the standard

ASCII character code.

Arrays of characters (character strings) are supported, but individual characters

are not.

6.4. VARIABLES, CONSTANTS, AND DATA TYPES 129

Pointers IC pointers are 16-bit numbers which represent locations in memory. Val-

ues in memory can be manipulated by calculating, passing and dereferencing pointers

representing the location where the information is stored.

Arrays Arrays are used to store homogenous lists of data (meaning that all the ele-

ments of an array have the same type). Every array has a length which is determined

at the time the array is declared. The data stored in the elements of an array can be

set and retrieved in the same manner that other variables can be.

Structures Structures are used to store non-homogenous and/or related sets of

data. Elements of a structure are referenced by name instead of number and may

be of any supported type. Structures are useful for organizing related data into a

coherent format, reducing the number of arguments passed to functions, increasing

the e�ective number of values which can be returned by functions, and creating

complex data representations such as directed graphs and linked lists.

6.4.4 Pointers

The address where a value is stored in memory is known as the pointer to that value.
It is often useful to deal with pointers to objects, but great care must be taken

to insure that the pointers used at any point in your code really do point to valid

objects in memory. Attempts to refer to invalid memory locations could corrupt your

memory. Most computing environments that you are probably used to return helpful

messages like \Segmentation Violation" or \Bus Error" on attempts to access illegal

memory. However, no such safety net exists in the 6.270 system and invalid pointer

dereferencing is very likely to go undetected and cause serious damage to your data,

your program, or even the pcode interpreter.

Pointer Safety

In past years, you could not return pointers from functions in IC , have arrays of

pointers, or have pointers to structures. Therefore, the number of opportunities

to misuse pointers have increased this year. However, if you follow a few simple

precautions you should do �ne.

First, you should always check that the value of a pointer is not equal to NULL

(a special zero pointer) before you try to access it. Variables which are declared to be

pointers are initialized to NULL, so many uninitialized values could be caught this

way.

Second, you should never use the pointer to a local variable in a manner which

could cause it to be accessed after the function in which it was declared terminates.

130 CHAPTER 6. IC MANUAL

When a function terminates the space where its values were being stored is recy-

cled. Therefore not only may dereferencing such pointers return incorrect values, but

assigning to those addresses could lead to serious data corruption. A good way to

prevent this is to never return the address of a local variable from the function which

declares it and never store those pointers in an object which will live longer than

the function itself (a global pointer, array, or struct). Global variables and variables

local to main will not move once declared and their pointers can be considered to be

secure.

The type checking done by ic will help prevent many mishaps, but it will not catch

all errors, so be carful.

Pointer Declaration and Use

A variable which is a pointer to an object of a given type is declared in the same

manner as a regular object of that type, but with an extra � in front of the variable

name.

The value stored at the location the pointer refers to is accessed by using the �

operator before the expression which calculates the pointer. This process is known

as dereferencing.

The address of a variable is calculated by using the & operator before that variable,

array element, or structure element reference.

There are two main di�erences between how you would use a variable to be a

given type and a variable declared as a pointer to that type.

For the following explanation, consider X and Xptr as de�ned as follows:

long X;

long *Xptr;

� Space Allocation { Declaring an object of a given type, like X is of type long,

allocates the space needed to store that value. Because an IC long takes four

bytes of memory, four bytes are reserved for the value of X to occupy. However,

a pointer like Xptr does not have the same amount of space allocated for it that

is needed for an object of the type it points to. Therefore it can only safely

refer to space which has already been allocated for globals (in a special section

of memory reserved for globals) or locals (temporary storage on the stack).

� Initial Value { It is always safe to refer to a non-pointer type, even if it hasn't

been initialized. However pointers have to be speci�cally assigned to the address

of legally allocated space or to the value of an already initialized pointer before

they are safe to use.

So, for example, if the �rst two statements after X and Xptr were declared were

the following: X=50L; *Xptr=50L;

6.4. VARIABLES, CONSTANTS, AND DATA TYPES 131

The �rst statement would do what you want and set X to 50, but the second

would put 50 into the �rst four bytes of memory, which is not really a good place to

be putting data...

Here is a sequence of commands to you could try which illustrate how pointers

and the and & operators are used. It also shows that once a pointer has been set to

point at a place in memory, references to it actually share the same memory as the

object it points to:

X=50L; /* set the memory allocated for X to the value 50 */

Xptr=&X; /* set Xptr to point to X */

Xptr; / see that the value pointed at by Xptr is 50 */

X=100L; /* set X to the value 100 */

Xptr; / see that the value pointed at by Xptr changed to 100 */

Xptr=200L; / set the value pointed at by Xptr to 200 */

X; /* see that the value in X changed to 200 */

Passing Pointers as Arguments

Pointers can be passed to functions and functions can change the values of the vari-

ables that are pointed at. This is termed call-by-reference; the reference, or pointer,
to the variable is given to the function that is being called. This is in contrast to call-
by-value, the standard way that functions are called, in which the value of a variable

is given the to function being called.

The following example de�nes an average sensor function which takes a port

number and a pointer to an integer variable. The function will average the sensor

and store the result in the variable pointed at by result.

Function arguments are declared to be pointers by prepending a star to the argu-

ment name, just as is done for other variable declarations.

void average_sensor(int port, int *result)
{

int sum= 0;
int i;

for (i= 0; i< 10; i++) sum += analog(port);

*result= sum/10;
}

Notice that the function itself is declared as a void. It does not need to return

anything, because it instead stores its answer in the pointer variable that is passed

to it.

The pointer variable is used in the last line of the function. In this statement,

the answer sum/10 is stored at the location pointed at by result. Notice that the

asterisk is used to get the location pointed by result.

132 CHAPTER 6. IC MANUAL

Returning Pointers from Functions

Pointers can also be returned from functions. Functions are de�ned to return pointers

by preceeding the name of the function with a star just like any other declaration.

For example if you have a linked list and you want to return a pointer to the

nth cell of the list or the last cell in the list, whichever comes �rst, you could write

the following function which takes a pointer to a linked list and the number of the

element you want as arguments and returns a pointer to the desired cell of the list:

struct llist {

int val;

struct llist *next;};

struct llist *get_elt_or_last(struct llist *l,int elt)

{

int i;

struct llist *curr=l;

if(curr!=NULL)

for(i=0;i<elt && curr->next!=NULL;i++)

curr=curr->next;

return(curr);

}

The function returns a pointer to a cell in the list, or NULL if the NULL pointer

was provided as the argument. That result could then be used just like any other

pointer to a linked list cell.

6.4.5 Arrays

IC supports arrays of characters, integers, long integers,
oating-point numbers, struc-

tures, pointers, and array pointers (multi-dimensional arrays). While unlike regular

C arrays in a number of respects, they can be used in a similar manner. The main

reasons that arrays are useful are that they allow you to allocate space for many in-

stances of a given type, send an arbitrary number of values to functions, and iterate

over a set of values.

Arrays in ic are di�erent and incompatible with arrays in other versions of C. This

incompatibility is caused by the fact that references to ic arrays are checked to insure

that the reference is truly within the bounds of that array. In order to accomplish

this checking in the general case, it is necessary that the size of the array be stored

with the contents of the array. This prevents many of the rigors that regular C puts

6.4. VARIABLES, CONSTANTS, AND DATA TYPES 133

arrays through from working. It is important to remember that an array of a given

type and a pointer to the same type are incompatible types in ic, whereas they are

largely interchangeable in regular C.

Declaring and Initializing Arrays

Arrays are declared using square brackets. The following statement declares an array

of ten integers:

int foo[10];

In this array, elements are numbered from 0 to 9. Elements are accessed by enclosing

the index number within square brackets: foo[4] denotes the �fth element of the

array foo (since counting begins at zero).

Arrays are initialized by default to contain all zero values; arrays may also be

initialized at declaration by specifying the array elements, separated by commas,

within curly braces. If no size value is speci�ed within the square brackets when

the array is declared but initialization information is given, the size of the array is

determined by the number of elements given in the declaration. For example,

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, with foo[0] equalling 0, foo[1] equalling 4, etc.

If a size is speci�ed and initialization data is given, the length of the initialization

data may not exceed the speci�ed length of the array or an error results. If, on the

other hand, you specify the size and provide fewer initialization elements than the

total length of the array, the remaining elements are padded with zeros.

Character arrays are typically text strings. There is a special syntax for initializing

arrays of characters. The character values of the array are enclosed in quotation

marks:

char string[]= "Hello there";

This form creates a character array called string with the ASCII values of the spec-

i�ed characters. In addition, the character array is terminated by a zero. Because

of this zero-termination, the character array can be treated as a string for purposes

of printing (for example). Character arrays can be initialized using the curly braces

syntax, but they will not be automatically null-terminated in that case. In general,

printing of character arrays that are not null-terminated will cause problems.

When you declare an array in IC two things are actually allocated and calculated

{ the array itself and a pointer to that array. The type of the variable you deal with

is actually a pointer to the array instead of the array itself, so it can be assigned to

and passed just like any other pointer. However, if the size of the array was non-zero

and you set its pointer to point to something else, you may lose the handle to the

space which has been allocated. Such memory is inaccessible will uselessly eat up the

available memory.

134 CHAPTER 6. IC MANUAL

Passing Arrays as Arguments

When an array is passed to a function as an argument, the array's pointer is actually

passed, rather than the elements of the array. If the function modi�es the array values,

the array will be modi�ed, since there is only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument: as an array or as

a pointer to the type of the array's elements. In IC array pointers are incompatible

with pointers to the elements of an array so such arguments can only be declared as

arrays.

As an example, the following function takes an index and an array, and returns

the array element speci�ed by the index:

int retrieve_element(int index, int array[])
{

return array[index];
}

Notice the use of the square brackets to declare the argument array as a pointer to

an array of integers.

When passing an array variable to a function, you are actually passing the value

of the array pointer itself and not one of its elements, so no square brackets are used.

{
int array[10];

retrieve_element(3, array);
}

Determining the size of Arrays at Runtime

An advantage of the way IC deals with arrays is that you can determine the size of

arrays at runtime. This allows you to do size checking on an array if you are uncertian

of its dimensions and possibly prevent your program from crashing.

This is totally incompatible with regular C and any code written using this primitive

will only be able to be compiled with IC .
The array size primitive returns the size of the array given to it regardless of

the dimension or type of the array. Here is an example of declarations and interaction

with the array size primitive (don't worry about the multi dimensional arrays, they

will be explained next section):

int i[4]={10,20,30};

int j[3][2]={{1,2},{2,4},{15}};

int k[2][0][0];

_array_size(i); /* returns 4 */

6.4. VARIABLES, CONSTANTS, AND DATA TYPES 135

_array_size(j); /* returns 3 */

_array_size(j[0]); /* returns 2 */

_array_size(k); /* returns 2 */

_array_size(k[0]); /* returns 0 */

/* now here's some even more incompatible fun -- rebind the

array pointers */

j[0]=i; /* make j[0] point to the same array as i */

_array_size(j[0]); /* returns size of i = 4 */

_array_size(j[1]); /* returns 2 because j[1] unchanged */

k[0]=j; /* make k[0] point to same array as j */

_array_size(k[0]); /* returns size of j = 3 */

_array_size(k[1]); /* returns 0 because k[1] unchanged from original */

Multi-dimensional Arrays

Since arrays in IC are really pointers to arrays, two-dimensional arrays are actually

single dimensional arrays whose elements are all pointers to one-dimensional arrays.

Two dimensional arrays are declared by putting two sets of square brackets after the

name of the variable. The number in the �rst set of brackets is the length of the array

of pointers to 1-D arrays. The number in the second set of brackets is the length of

each of the 1-D arrays. Arrays of with any number of dimensions can be generalized

up from the model. Refer to �gure 6.2 to see how muli-dimensional arrays are actually

allocated.

Example of Multi-dimensional Array Usage

int a[5][2]={{1,10},{5,50},{-5,-50},{2,20},{10,100}};

/* sort the arrays in a two dimensional array of integers such that

they are sorted by their first elements */

void arrsort_2d(int iarr[][])

{

int min_ptr[]; /* define a pointer to 1-d array of int to use */

int i,j,min_index;

int length=_array_size(iarr); /* the _array_size primitive returns

the length of an array no matter

how many dimensions */

for(i=0;i<length;i++) /* iterate over the arrays in arr */

{

136 CHAPTER 6. IC MANUAL

i

Size = 4

10

20

30

int i[4]={10,20,30} ;

0

int j[3][2]={{1,2},{2,4},{15}};

Size=3

Ptr to 1-D array

Ptr to 1-D array

Ptr to 1-D array

Ptr to 2-D arrayPtr to 1-D array

Size=2

1

2

Size=2

2

4

Size=2

15

0

j

Figure 6.2: Example of the meaning of declaring two-dimensional arrays as compared

to one-dimensional arrays.

6.4. VARIABLES, CONSTANTS, AND DATA TYPES 137

for(j=i+1,min_ptr=iarr[i],min_index=i; /* iterate over lower elts */

j<length; /* set minimum to default */

j++) /* to the current element */

if(iarr[j][0]<min_ptr[0])

{

/* if first element of the jth array in iarr is smaller than

the first element of the current minimum array, set the

new minimum array to be the jth array */

min_ptr=iarr[j];

min_index=j;

}

if(min_index!=i)

{

/* if there is a lower array with a smaller first element

than the ith array, swap the ith array with the minimum */

iarr[min_index]=iarr[i];

iarr[i]=min_ptr;

}

}

}

void arrprint_2d(int iarr[][])

{

int length=_array_size(iarr); /* number of 1-d arrays stored in iarr */

int elt_length;

int i,j;

for(i=0;i<length;i++) /* iterate over arrays in iarr, print one per line */

{ /* print each element in sub array */

for(j=0;j<_array_size(iarr[i]);j++)

printf("%d ",iarr[i][j]);

printf("\n");

}

}

/* example of interaction with ic with the above code loaded */

C> arrprint_2d(a);

Downloaded 9 bytes (addresses C200-C208)

1 10

5 50

138 CHAPTER 6. IC MANUAL

-5 -50

2 20

10 100

Returned <void>

C> arrsort_2d(a);

Downloaded 9 bytes (addresses C200-C208)

Returned <void>

C> arrprint_2d(a);

Downloaded 9 bytes (addresses C200-C208)

-5 -50

1 10

2 20

5 50

10 100

Returned <void>

6.4.6 Structures

Structures in ic are fully compatible with regular C structures except that structures
cannot be directly passed to or returned from functions and the values of one structure

of a given type cannot be directly assigned to another structure of the same type.
However, elements in a structure can be conveniently accessed through a pointer to

that structure. Pointers to structures can be used as arguments to or as return values

from functions and variables of type pointer to structure can be directly assigned to

one another.

Structures must be de�ned before they are used. A good way to accomplish this is

to place structure de�nitions in a header �le which is always loaded before the other

�les or to put structure de�nitions in header �les and include them with the #include

preprocessor directive in each �le where the structure is used.

Refer to the section on structures in A Book on C or other C reference to learn

more.

6.4.7 Complex Initialization examples

Complex types { arrays and structures { may be initialized upon declaration with a

sequence of constant values contained within curly braces and separated by commas.

Arrays of character may also be initialized with a quoted string of characters.

For initialized declarations of single dimensional arrays, the length can be left

blank and a suitable length based on the initialization data will be assigned to it.

Multi-dimensional arrays must have the size of all dimensions speci�ed when the array
is declared. If a length is speci�ed, the initialization data may not over
ow that

6.5. OPERATORS, EXPRESSIONS, AND STATEMENTS 139

length in any dimension or an error will result. However, the initialization data may

be shorter than the speci�ed size and the remaining entries will be initialized to 0.

Pointers can be explicitly initialized to the special constant pointer NULL if de-

sired. However, this also the default value so this is only really useful as a place

holder for complex initializations.

Following is an example of legal global and local variable initializations:

/* declare many globals of various types */
int i=50;

int *ptr=NULL;

float farr[3]={ 1.2, 3.6, 7.4 };
int tarr[2][4]={ { 1, 2, 3, 4 }, { 2, 4, 6, 8} };

char c[]=''Hi there how are you?'';
char carr[5][10]={``Hi'',''there'',''how'',''are'',''you''};

struct bar {
int i;
int *p;
long j;} b={5, NULL, 10L};

struct bar barr[2] = { { 1, NULL, 2L }, { 3 } };

/* declare locals of various types */
int foo()
{

int x; /* create local variable x
with initial value 0 */

int y= tarr[0][2]; /* create local variable y
with initial value 3 */

int *iptr=&i; /* create a local pointer to integer
which points to the global i */

int larr[2]={10,20}; /* create a local array larr
with elements 10 and 20 */

struct bar lb={5,NULL,10L}; /* create a local variable of type
struct bar with i=5 and j=10 */

char lc[]=carr[2]; /* create a local string lc with
initial value ``how'' */

...
}

6.5 Operators, Expressions, and Statements

Operators act upon objects of a certain type or types and specify what is to be done to

them. Expressions combine variables and constants to create new values. Statements

are expressions, assignments, function calls, or control
ow statements which make

up C programs.

140 CHAPTER 6. IC MANUAL

6.5.1 Operators

Each of the data types has its own set of operators that determine which operations

may be performed on them.

Integers

The following operations are supported on integers:

� Arithmetic. addition +, subtraction -, multiplication *, division /.

� Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=,

less-than-equal <=.

� Bitwise Arithmetic. bitwise-OR |, bitwise-AND &, bitwise-exclusive-OR ^,

bitwise-NOT .

� Boolean Arithmetic. logical-OR ||, logical-AND &&, logical-NOT !.

When a C statement uses a boolean value (for example, if), it takes the integer

zero as meaning false, and any integer other than zero as meaning true. The

boolean operators return zero for false and one for true.

Boolean operators && and || stop executing as soon as the truth of the �nal

expression is determined. For example, in the expression a && b, if a is false,

then b does not need to be evaluated because the result must be false. The &&

operator \knows this" and does not evaluate b.

Long Integers

A subset of the operations implemented for integers are implemented for long integers:

arithmetic addition +, subtraction -, and multiplication *, and the integer comparison

operations. Bitwise and boolean operations and division are not supported.

Floating Point Numbers

IC uses a package of public-domain
oating point routines distributed by Motorola.

This package includes arithmetic, trigonometric, and logarithmic functions.

The following operations are supported on
oating point numbers:

� Arithmetic. addition +, subtraction -, multiplication *, division /.

� Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=,

less-than-equal <=.

� Built-in Math Functions. A set of trigonometric, logarithmic, and exponen-

tial functions is supported, as discussed in Section 6.11 of this document.

6.5. OPERATORS, EXPRESSIONS, AND STATEMENTS 141

Characters

Characters are only allowed in character arrays. When a cell of the array is refer-

enced, it is automatically coerced into a integer representation for manipulation by

the integer operations. When a value is stored into a character array, it is coerced

from a standard 16-bit integer into an 8-bit character (by truncating the upper eight

bits).

6.5.2 Assignment Operators and Expressions

The basic assignment operator is =. The following statement adds 2 to the value of

a.

a = a + 2;

The abbreviated form

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << >> & ^ |

6.5.3 Increment and Decrement Operators

The increment operator \++" increments the named variable. For example, the state-

ment \a++" is equivalent to \a= a+1" or \a+= 1".

A statement that uses an increment operator has a value. For example, the

statement

a= 3;
printf("a=%d a+1=%d\n", a, ++a);

will display the text \a=3 a+1=4."

If the increment operator comes after the named variable, then the value of the

statement is calculated after the increment occurs. So the statement

a= 3;
printf("a=%d a+1=%d\n", a, a++);

would display \a=3 a+1=3" but would �nish with a set to 4.

The decrement operator \--" is used in the same fashion as the increment oper-

ator.

142 CHAPTER 6. IC MANUAL

6.5.4 Data Access Operators

While uses of pointers, arrays, and structures have not been fully treated, the symbols

used in manipulating these types are also operators and will be mentioned brie
y here.

� &: A single ampersand preceeding a variable, an array reference, or a structure

element reference returns a pointer to the location in memory where that in-

formation is being stored. This should not be used on arbitrary expressions as

they do not have a stable place in memory where they are being stored.

� *: A single star preceeding an expression which evaluates to a pointer returns

the value which is stored at that address. This process of accessing the value

stored within a pointer is known as dereferencing.

� [expr]: an expression in square braces following an expression which evaluates

to an array (an array variable, the result of a function which returns an array

pointer, etc.) checks that the value of the expression falls within the bounds of

the array and references that element.

� .: A dot between a structure variable and the name of one of its �elds returns

the value stored in that �eld.

� ->: An arrow between a pointer to a structure and the name of one of its �elds

in that structure acts the same as a dot does, except it acts on the structure

pointed at by it's left hand side. Where f is a structure of a type with e as an

element name, the two expressions f.i and (&f)->i are equivalent.

6.5.5 Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associativity for the C

operators. Operators listed earlier in the table have higher precedence; operators on

the same line of the table have equal precedence.

6.6. CONTROL FLOW 143

Operator Associativity

() [] left to right

! ~ ++ -- - (type) right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| right to left

= += -= etc. right to left

, left to right

6.6 Control Flow

IC supports most of the standard C control structures. One notable exception is the

case and switch statement, which is not supported.

6.6.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements may be grouped

together into a block using curly braces. Inside a block, local variables may be de�ned.

6.6.2 If-Else

The if else statement is used to make decisions. The syntax is:

if (expression)

statement-1

else

statement-2

expression is evaluated; if it is not equal to zero (e.g., logic true), then statement-1

is executed.

The else clause is optional. If the if part of the statement did not execute, and

the else is present, then statement-2 executes.

144 CHAPTER 6. IC MANUAL

6.6.3 While

The syntax of a while loop is the following:

while (expression)

statement

while begins by evaluating expression. If it is false, then statement is skipped. If

it is true, then statement is evaluated. Then the expression is evaluated again, and

the same check is performed. The loop exits when expression becomes zero.

One can easily create an in�nite loop in C using the while statement:

while (1)

statement

6.6.4 For

The syntax of a for loop is the following:

for (expr-1 ; expr-2 ; expr-3)

statement

This is equivalent to the following construct using while:

expr-1 ;

while (expr-2) {

statement

expr-3 ;

}

Typically, expr-1 is an assignment, expr-2 is a relational expression, and expr-3 is

an increment or decrement of some manner. For example, the following code counts

from 0 to 99, printing each number along the way:

int i;
for (i= 0; i < 100; i++)
printf("%d\n", i);

6.6.5 Break

Use of the break provides an early exit from a while or a for loop.

6.7. LCD SCREEN PRINTING 145

6.7 LCD Screen Printing

IC has a version of the C function printf for formatted printing to the LCD screen.

The syntax of printf is the following:

printf(format-string , [arg-1] , : : :, [arg-N])

This is best illustrated by some examples.

6.7.1 Printing Examples

Example 1: Printing a message. The following statement prints a text string to

the screen.

printf("Hello, world!\n");

In this example, the format string is simply printed to the screen.

The character \\n" at the end of the string signi�es end-of-line. When an end-of-

line character is printed, the LCD screen will be cleared when a subsequent character

is printed. Thus, most printf statements are terminated by a \n.

Example 2: Printing a number. The following statement prints the value of the

integer variable x with a brief message.

printf("Value is %d\n", x);

The special form %d is used to format the printing of an integer in decimal format.

Example 3: Printing a number in binary. The following statement prints the

value of the integer variable x as a binary number.

printf("Value is %b\n", x);

The special form %b is used to format the printing of an integer in binary format.

Only the low byte of the number is printed.

Example 4: Printing a
oating point number. The following statement prints

the value of the
oating point variable n as a
oating point number.

printf("Value is %f\n", n);

The special form %f is used to format the printing of
oating point number.

Example 5: Printing two numbers in hexadecimal format.

printf("A=%x B=%x\n", a, b);

The form %x formats an integer to print in hexadecimal.

146 CHAPTER 6. IC MANUAL

6.7.2 Formatting Command Summary

Format Command Data Type Description

%d int decimal number

%x int hexadecimal number

%b int low byte as binary number

%c int low byte as ASCII character

%f float
oating point number

%s char array char array (string)

6.7.3 Special Notes

� The �nal character position of the LCD screen is used as a system \heartbeat."

This character continuously blinks back and forth when the board is operating

properly. If the character stops blinking, the board has failed.

� Characters that would be printed beyond the �nal character position are trun-

cated.

� When using a two-line display, the printf() command treats the display as a

single longer line.

� Printing of long integers is not presently supported.

6.8 Preprocessor

This year IC will automatically run input �les through the C preprocessor before

compiling them. To learn more about the C preprocessor refer to any standard C

reference.

Using #de�ne macros for constants and function macros can make your code more

e�cient as well as easier to read. Using #ifdef to conditionally include code can be

very useful, for instance, for debugging purposes. You may �nd reading about at

least these two directives in a standard reference useful.

The preprocessor processes each module you load as if it were a stand-alone �le so

the macros de�ned in one �le do not a�ect the other �les. However, in order to allow

your macros to be used in command line interactions, a concatenation of the macros

de�ned in all currently loaded �les is included with command line statements. This

means that having con
icting de�nitions for a given macro in di�erent �les will cause

con
icts and prevent use of macros in command line interactions. Therefore creating

con
icting macro de�nitions should be avoided just like you would avoid creating

con
icting variable declarations.

6.9. THE IC LIBRARY FILE 147

6.9 The IC Library File

Library �les provide standard C functions for interfacing with hardware on the robot

controller board. These functions are written either in C or as assembly language

drivers. Library �les provide functions to do things like control motors, make tones,

and input sensors values.

IC automatically loads the library �le every time it is invoked. Depending on

which 6811 board is being used, a di�erent library �le will be required. IC may be

con�gured to load di�erent library �les as its default; for the purpose of the 6.270

contest, the on-line version of IC will be con�gured appropriately for the board that

is in use.

As of this writing, there are four related 6811 systems in use: the 1991

6.270 Board (the \Revision 2" board), the 1991 Sensor Robot, the 1992
6.270 Board (the \Revision 2.1" board), and the 1993 6.270 Board (the
\Revision 2.2" board). This writing covers the 1992 board only; documen-
tation for the other two systems is available elsewhere.

On the MIT Athena system, IC library �les are located in the directory /mit/-

6.270/lib/ic. (To understand better how the library functions work, study of the

library �le source code is recommended.) The main library �le for the 1992 6.270

Board is named lib r22.lis.

6.9.1 Output Control

DC Motors

Motor ports are numbered from 0 to 5; ports for motors 0 to 3 are located on the

Microprocessor Board while motors 4 and 5 are located on the Expansion Board.

Motor may be set in a \forward" direction (corresponding to the green motor LED

being lit) and a \backward" direction (corresponding to the motor red LED being

lit).

The functions fd(int m) and bk(int m) turn motor m on forward or backward,

respectively, at full power. The function off(int m) turns motor m o�.

The power level of motors may also be controlled. This is done in software by a

motor on and o� rapidly (a technique called pulse-width modulation. The motor(int
m, int p) function allows control of a motor's power level. Powers range from 100

(full on in the forward direction) to -100 (full on the the backward direction). The

system software actually only controls motors to seven degrees of power, but argument

bounds of �100 and +100 are used.

148 CHAPTER 6. IC MANUAL

void fd(int m)

Turns motor m on in the forward direction. Example: fd(3);

void bk(int m)

Turns motor m on in the backward direction. Example: bk(1);

void off(int m)

Turns o� motor m. Example: off(1);

void alloff()

void ao()

Turns o� all motors. ao is a short form for alloff.

void motor(int m, int p)

Turns on motor m at power level p. Power levels range from 100 for full on forward

to -100 for full on backward.

Servo Motor

Servos are motors with internal position feedback which you can accurately command

to a given orientation. Servos will actively seek to move to and remain at the orien-

tation they are commanded to go to. Servos are useful for aiming sensors or moving

actuators through a limited arc. They are generally able to sweep through about 180

degrees and no more.

Library routines allows control of a single servo motor. The servo motor has a

three-wire connection: power, ground, and control. There is a dedicated connection

for the servo on the main board at the top of the bank of connectors which are above

and to the left of the main power switch. A three prong connector with ground on

the left, power in the middle, and control on the right should be used to plug the

servo into its connector. So long as you are sure to get power in the middle, the servo

will not be damaged by plugging it in backwards, but will simply not work until it is

plugged in properly.

The position of the servo motor shaft is controlled by a rectangular waveform

that is generated on the A7 pin. The duration of the positive pulse of the waveform

determines the position of the shaft. The acceptable width of the pulse varies for

di�erent models of servos, but is approximately 700 timer cycles minimum and 4000

timer cycles maximum, where the 6811's timer runs at 2MHz. The pulse is repeated

approximately every 20 milliseconds.

6.9. THE IC LIBRARY FILE 149

void servo on()

Turns the servo signal on. You must call this function before the servo will move.

void servo off()

Turns servo signal o�. The servo will no longer try to move to any particular

position and will move freely. When you are not actively using the servo, turning it

o� will save power and processor cycles.

int servo(int period)

Sets the high time of the servo signal to period timer cycles so long as that falls

within the acceptable range for the servo. Otherwise it trunctates the value to the

closest the servo is physically able to go to. It returns the thresholded version of the

period you gave it. Remember that servos have a �nite reaction time which, while

very fast to human senses of time, is very slow to a processor. If you are resetting

the servo angle in a tight loop it may well never catch up with you.

int servo rad(float angle)

Sets the commanded orientation of the servo to approximately the angle in radians

that it is given and returns the pulse width in timer counts which the servo was

actually commanded with. The minimum pulse width is de�ned to be zero radians

and the maximum is de�ned to be � radians.

int servo deg(float angle)

Sets the commanded orientation of the servo to approximately the angle in degrees

that it is given and returns the pulse width in timer counts which the servo was

actually commanded with. The minimum pulse width is de�ned to be zero degrees

and the maximum is de�ned to be 180 degrees.

int radian to pulse(float angle)

Converts the angle given in radians to the corresponding pulse width in timer

counts. Input range is 0.0 to 3.14.

int degree to pulse(float angle)

Converts the angle given in degrees to the corresponding pulse width in timer

counts. Input range is 0.0 to 180.0.

Unidirectional Drivers

LED Drivers There are two output ports located on the Expansion Board that are

suitable for driving LEDs or other small loads. These ports draw their power from

the motor battery and hence will only work when that battery is connected.

150 CHAPTER 6. IC MANUAL

The following commands are used to control the LED ports:

void led out0(int s)

Turns on LED0 port if s is non-zero; turns it o� otherwise.

void led out1(int s)

Turns on LED1 port if s is non-zero; turns it o� otherwise.

Expansion Board Motor Ports Motor ports 4 and 5, located on the Expansion

Board, may also be used to control unidirectional devices, such as a solenoid, lamp,

or a motor that needs to be driven in one direction only. Each of the two motor ports,

when used in this fashion, can independently control two such devices.

To use the ports unidirectionally, the two-pin header directly beneath the motor

4 and 5 LEDs is used.

void motor4 left(int s)

Turns on left side of motor 4 port if s is non-zero; turns it o� otherwise.

void motor4 right(int s)

Turns on right side of motor 4 port if s is non-zero; turns it o� otherwise.

void motor5 left(int s)

Turns on left side of motor 5 port if s is non-zero; turns it o� otherwise.

void motor5 right(int s)

Turns on right side of motor 5 port if s is non-zero; turns it o� otherwise.

6.9.2 Sensor Input

Digital Input

int digital(int p)

Returns the value of the sensor in sensor port p, as a true/false value (1 for true

and 0 for false).

Sensors are expected to be active low, meaning that they are valued at zero volts

in the active, or true, state. Thus the library function returns the inverse of the

actual reading from the digital hardware: if the reading is zero volts or logic zero, the

digital() function will return true.

6.9. THE IC LIBRARY FILE 151

void set digital threshold(int p,int thresh)

Sets the threshold value for digital readings on analog port p to thresh. The

meaningful range for p is 8 through 27, and the meaningful range for thresh is 0 to

255. If the actual analog value read on a call to digital is greater than this threshold

value, a 0 is returned. If the analog reading is equal to or less than the threshold a 1

is returned.

The analog-to-digital threshold values are implemented as persistents. On down-

load they are initialized to threshold at 127 { or about 2.5V. Once set digital threshold()

has been called on a port that value will remain until it is reset by a subsequent call or

until code is downloaded again. Ports are numbered as marked on the Microprocessor

Board and Expansion Board.

6.9.3 Analog Inputs

int analog(int p)

Returns value of sensor port numbered p. Result is integer between 0 and 255.

If the analog() function is applied to a port that is implemented digitally in

hardware, then the value 255 is returned if the hardware digital reading is 1 (as if a

digital switch is open, and the pull up resistors are causing a high reading), and the

value 0 is returned if the hardware digital reading is 0 (as if a digital switch is closed

and pulling the reading near ground).

Ports are numbered as marked on the Microprocessor Board and Expansion Board.

int motor force(int m)

Returns value of analog input sensing current level through motor m. Result is

integer between 0 and 255, but typical readings range from about 40 (low force) to

100 (high force).

The force-sensing circuitry functions properly only when motors are operated at

full speed. The circuit returns invalid results when motors are pulse-width modulated

because of spikes that occur in the feedback path.

The force-sensing circuitry is implemented for motors 0 through 3.

int dip switch(int sw)

Returns value of DIP switch sw on interface board. Switches are numbered from

1 to 4 as per labelling on actual switch. Result is 1 if the switch is in the position

labelled \on," and 0 if not.

int dip switches()

Returns value on DIP switches as a four-bit binary number. Left-most switch is

most signi�cant binary digit. \On" position is binary one.

152 CHAPTER 6. IC MANUAL

int choose button()

Returns value of button labelled Choose: 1 if pressed and 0 if released.
Example:

/* wait until choose button pressed */
while (!left_button()) {}

int escape button()

Returns value of button labelled Escape.
Example:

/* wait for button to be pressed; then
wait for it to be released so that
button press is debounced */

while (!escape_button()) {}
while (escape_button()) {}

Infrared Subsystem

The infrared subsystem is composed of two parts: an infrared transmitter, and in-

frared receivers. Software is provided to control transmission frequency and detection

of infrared light at two frequencies.

Infrared Transmission

void ir transmit on()

Enables transmission of infrared light through ir out port.

void ir transmit off()

Disables transmission of infrared light through ir out port.

void set ir transmit frequency(int period)

Sets infrared transmission frequency. perioddetermines the delay in half-microseconds

between transitions of the infrared waveform. If period is set to 10,000, a frequency

of 100 Hz. will be generated. If period is set to 8,000, a frequency of 125 Hz. will

be generated. The decoding software is capable of detecting transmissions on either

of these two frequencies only.

Upon a reset condition, the infrared transmission frequency is set for 100 Hz. and

is disabled.

6.9. THE IC LIBRARY FILE 153

Infrared Reception In a typical 6.270 application, one robot will be broadcasting

infrared at 100 Hz. and will set its detection system for 125 Hz. The other robot will

do the opposite. Each robot must physically shield its IR sensors from its own light;

then each robot can detect the emissions of the other.

The infrared reception software explained here is a very expensive way of detecting

IR which you may choose to use. However, if you are clever about the way you shield

your IR detectors and structure your detection behavior it is possible to accomplish

the same thing with far less overhead by reading the digital input values of the IR

detectors directly. If you are thinking about using IR in your strategy, I recommend

you try this out to see how you like it, then talk to a TA about your IR plans to

discuss what detection strategy would be best for you.

The infrared reception software employs a phase-locked loop to detect infrared

signals modulated at a particular frequency. This program generates an internal

squarewave at the desired reception frequency and attempts to lock this squarewave

into synchronization with a waveform received by an infrared sensor. If the error

between the internal wave and the external wave is below some threshold, the exter-

nal wave is considered \detected." The software returns as a result the number of

consecutive detections for each of the infrared sensor inputs.

Up to four infrared sensors may be used. These are plugged into positions 4

through 7 of the digital input port. These ports and the remainder of the digital

input port may be used without con
ict for standard digital input while the infrared

detection software is operating.

The following library functions control the infrared detection system:

void ir receive on()

Enables the infrared reception software. The default is disabled. When the soft-

ware is enabled, between 20% and 30% of the 6811 processor time will be spent

performing the detection function; therefore it should only be enabled if it is being

used.

void ir receive off()

Disables the infrared reception software.

void set ir receive frequency(int f)

Sets the operating frequency for the infrared reception software. f should be 100

for 100 Hz. or 125 for 125 Hz. Default is 100.

int ir counts(int p)

Returns number of consecutive squarewaves at operating frequency detected from

154 CHAPTER 6. IC MANUAL

port p of the digital input port. Result is number from 0 to 255. p must be 4, 5, 6,

or 7

Random noise can cause spurious readings of 1 or 2 detections. The return value

of ir counts() should be greater than three before it is considered the result of a

valid detection.

Shaft Encoders

Shaft encoders can be used to count the number of times a wheel spins, or in general

the number of digital pulses seen by an input. Two types of shaft encoders can be

made using 6.270 sensors: optical encoders which use optical switches whose beam

is periodically broken by a slotted wheel, or magnetic encoders which uses hall e�ect

sensors which change state when a magnet on a shaft rotates past.

Shaft encoders are implemented using the input timer capture feature on the 6811.

Therefore processing time is only used when a pulse is actually being recorded, and

even very fast pulses can be counted. Because digital ports 0 and 1 are the only

two input capture channels available for use on the 6.270 board, only two channels of

shaft encoding are possible.

The encoding software for the 6.270 board keeps a running count of the number

of pulses each enabled encoder has seen. The number of counts is set to 0 when a

chanel is �rst enabled and when a user resets that channel. Because the counters are

only 16-bits wide, they will over
ow and the value will appear negative after 32,767

counts have been accumulated without a reset.

Shaft Encoder Files As shaft encoders are an optional feature and not part of

the standard hardware of the 6.270 board, the library routines which read them are

not loaded on start up.

In order to load the following routines for use in your programs, load the �le

\encoders.lis". This �le is in the standard 6.270 library directory so ic will �nd it by

this name.

Shaft Encoder Routines The actions of the shaft encoders are commanded and

the results are read using the following routines. The argument encoder to each

of the routines speci�es which shaft encoder the function should a�ect. This value

should be 0 for digital port 0 or one for digital port 1. Arguments out of the range 0

to 1 have no useful e�ect.

void enable encoder(int encoder)

Enables the given encoder to start counting pulses and resets its counter to zero.

By default encoders start in the disabled state and must be enabled before they start

counting.

6.9. THE IC LIBRARY FILE 155

void disable encoder(int encoder)

Disables the given encoder and prevents it from counting. Each shaft encoder

uses processing time every time it receives a pulse while enabled, so they should be

disabled when you no longer need the encoder's data.

void reset encoder(int encoder)

Resets the counter of the given encoder to zero. For an enabled encoder, it is

more e�cient to reset its value than to use enable encoder() to clear it.

int read encoder(int encoder)

Returns the number of pulses counted by the given encoder since it was enabled

or since the last reset, whichever was more recent.

6.9.4 Time Commands

System code keeps track of time passage in milliseconds. The time variables are

implemented using the long integer data type. Standard functions allow use
oating

point variables when using the timing functions.

void reset system time()

Resets the count of system time to zero milliseconds.

long mseconds()

Returns the count of system time in milliseconds. Time count is reset by hardware

reset (i.e., pressing reset switch on board) or the function reset system time().

mseconds() is implemented as a C primitive (not as a library function).

float seconds()

Returns the count of system time in seconds, as a
oating point number. Reso-

lution is one millisecond.

void sleep(float sec)

Waits for an amount of time equal to or slightly greater than sec seconds. sec

is a
oating point number.
Example:

/* wait for 1.5 seconds */
sleep(1.5);

156 CHAPTER 6. IC MANUAL

void msleep(long msec)

Waits for an amount of time equal to or greater than msec milliseconds. msec is

a long integer.
Example:

/* wait for 1.5 seconds */
msleep(1500L);

6.9.5 Tone Functions

Several commands are provided for producing tones on the standard beeper.

void beep()

Produces a tone of 500 Hertz for a period of 0.3 seconds.

void tone(float frequency, float length)

Produces a tone at pitch frequency Hertz for length seconds. Both frequency

and length are
oats.

void set beeper pitch(float frequency)

Sets the beeper tone to be frequency Hz. The subsequent function is then used

to turn the beeper on.

void beeper on()

Turns on the beeper at last frequency selected by the former function.

void beeper off()

Turns o� the beeper.

6.9.6 Menuing and Diagnostics Functions

These functions are not loaded automatically, but they are available for you to use if

you wish in the standard 6.270 library directory. They provide a standardized user

interface for prompting users for input using the choose and select buttons and the

frob knob which you may wish to use for debugging the state of your robot while

away from the terminal or for changing thresholds or gains on the
y.

If you want to use functions chosen button() or wait button() directly you

should include the header �le \menu.h" at the top of each �le you call them from.

This can be accomplished by including the line #include ``menu.h'' at the top

of your �le. If you only use the other functions described here, you do not need to

include the header �le.

6.9. THE IC LIBRARY FILE 157

menu.c

Load menu.c to be able to use these functions.

int chosen button()

Checks the user buttons and returns CHOOSE B if the choose button is pressed,

ESCAPE B if the escape button is pressed, and NEITHER B if neither button is

pressed. If both buttons are pressed, the choose button has priority.

int wait button(int mode)

Waits for either user button to execute the action appropriate to mode then returns

which button was pressed. The choices for mode are: DOWN B { wait until either

button is pressed; UP B { wait until no buttons are pressed; CYCLE B { wait until

a button is depressed and then all depressed buttons are released before returning.

int select int value(char s[],int min val,int max val)

float select float value(char s[],float min val,float max val)

Interactively selects and returns a number between min val and max val which

is selected by adjusting the frob knob until the appropriate value is displayed then

pressing a button. If the escape button was pressed, returns -1 (or -1.0) regardless of

the value chosen. Otherwise returns the chosen value. Remember that the frob knob

only returns one of 255 values, so if the range is greater than that not all values will

be possible choices.

int select string(char choices[][],int n)

Interactively selects a string from an array of string (two-dimensional array of

characters) of length n and returns an integer when a button is pressed. If the button

pressed was the choose button, it returns the index into the array of the selected

string, otherwise it returns -1. Example of use:

char a[3][14]={"Analog Port ","Digital Port ","Quit"};

int port,index=select_string(a,3);

if(index>-1 && index<2)

port=select_int_value(a[index],0,27);

diagnostic.c

Load menu.c and diagnostic.c to be able to use these functions.

158 CHAPTER 6. IC MANUAL

int view average port(int port,int samples)

Displays the analog reading of the given port until a button is pressed. If the

button is the choose button, it then samples the reading at the given port, averages

samples readings together, then prints and returns the average result. If the button

pushed was the ecape button, it returns -1.

int set AtoD threshold(int port)

Allows you to interactively set the threshold for the given analog port above

which a call to digital() on that port will read a 0 and below which a call to

digital() will return 1. First prompts you to choose one of two modes { manual

entry in which you set the value using the frob knob, or sampling in which you are

asked to sample typical high and low values which are averaged together to choose

the threshold. Pressing the escape button at any time will cause -1 to be returned

and the threshold value not to be set, otherwise the threshold is set to the selected

value and that value is returned.

void view inputs()

General purpose input status viewer using the standard menuing routines to

show digital inputs, analog inputs, frob knob, dip switches, and motor force inputs.

Pressing escape at any time exits the viewer.

void frob outputs()

General purpose output frobber. Uses the standard menuing routines to let you

control the motors, led outputs, ir output, and the servo. Pressing escape from the

main menu or selecting \Quit" exits the frobber.

void control panel()

General purpose control panel to let you view inputs, frob outputs, or set A to D

thresholds. Pressing the escape button from the main menu or selecting \Quit" exits

the control panel.

6.10 Multi-Tasking

6.10.1 Overview

One of the most powerful features of IC is its multi-tasking facility. Processes can be

created and destroyed dynamically during run-time.

Any C function can be spawned as a separate task. Multiple tasks running the

same code, but with their own local variables, can be created.

6.10. MULTI-TASKING 159

Processes communicate through global variables: one process can set a global to

some value, and another process can read the value of that global.

Each time a process runs, it executes for a certain number of ticks, de�ned in

milliseconds. This value is determined for each process at the time it is created. The

default number of ticks is �ve; therefore, a default process will run for 5 milliseconds

until its \turn" ends and the next process is run. All processes are kept track of in a

process table; each time through the table, each process runs once (for an amount of

time equal to its number of ticks).

Each process has its own program stack. The stack is used to pass arguments for

function calls, store local variables, and store return addresses from function calls.

The size of this stack is de�ned at the time a process is created. The default size of

a process stack is 256 bytes.

Processes that make extensive use of recursion or use large local arrays will prob-

ably require a stack size larger than the default. Each function call requires two stack

bytes (for the return address) plus the number of argument bytes; if the function that

is called creates local variables, then they also use up stack space. In addition, C

expressions create intermediate values that are stored on the stack.

It is up to the programmer to determine if a particular process requires a stack

size larger than the default. A process may also be created with a stack size smaller
than the default, in order to save stack memory space, if it is known that the process

will not require the full default amount.

When a process is created, it is assigned a unique process identi�cation number or
pid. This number can be used to kill a process.

6.10.2 Creating New Processes

The function to create a new process is start process. start process takes one

mandatory argument|the function call to be started as a process. There are two

optional arguments: the process's number of ticks and stack size. (If only one optional

argument is given, it is assumed to be the ticks number, and the default stack size is

used.)

start process has the following syntax:

int start process(function-call(: : :) , [TICKS] , [STACK-SIZE])

start process returns an integer, which is the process ID assigned to the new pro-

cess.

The function call may be any valid call of the function used. The following code

shows the function main creating a process:

void check_sensor(int n)
{

160 CHAPTER 6. IC MANUAL

while (1)
printf("Sensor %d is %d\n", n, digital(n));

}

void main()
{
start_process(check_sensor(2));

}

Normally when a C functions ends, it exits with a return value or the \void" value.

If a function invoked as a process ends, it \dies," letting its return value (if there was

one) disappear. (This is okay, because processes communicate results by storing them

in globals, not by returning them as return values.) Hence in the above example, the

check sensor function is de�ned as an in�nite loop, so as to run forever (until the

board is reset or a kill process is executed).

Creating a process with a non-default number of ticks or a non-default stack size

is simply a matter of using start process with optional arguments; e.g.

start_process(check_sensor(2), 1, 50);

will create a check sensor process that runs for 1 milliseconds per invocation and

has a stack size of 50 bytes (for the given de�nition of check sensor, a small stack

space would be su�cient).

6.10.3 Destroying Processes

The kill process function is used to destroy processes. Processes are destroyed by

passing their process ID number to kill process, according to the following syntax:

int kill process(int pid)

kill process returns a value indicating if the operation was successful. If the return

value is 0, then the process was destroyed. If the return value is 1, then the process

was not found.

The following code shows the main process creating a check sensor process, and

then destroying it one second later:

void main()
{
int pid;

pid= start_process(check_sensor(2));
sleep(1.0);
kill_process(pid);

}

6.11. FLOATING POINT FUNCTIONS 161

6.10.4 Process Management Commands

IC has two commands to help with process management. The commands only work

when used at the IC command line. They are not C functions that can be used in

code.

kill all

kills all currently running processes.

ps

prints out a list of the process status.

The following information is presented: process ID, status code, program counter,

stack pointer, stack pointer origin, number of ticks, and name of function that is

currently executing.

6.10.5 Process Management Library Functions

The following functions are implemented in the standard C library.

void hog processor()

Allocates an additional 256 milliseconds of execution to the currently running

process. If this function is called repeatedly, the system will wedge and only execute

the process that is calling hog processor(). Only a system reset will unwedge from

this state. Needless to say, this function should be used with extreme care, and should

not be placed in a loop, unless wedging the machine is the desired outcome.

void defer()

Makes a process swap out immediately after the function is called. Useful if a

process knows that it will not need to do any work until the next time around the

scheduler loop. defer() is implemented as a C built-in function.

6.11 Floating Point Functions

In addition to basic
oating point arithmetic (addition, subtraction, multiplication,

and division) and
oating point comparisons, a number of exponential and transcen-

dental functions are built in to IC:

float sin(float angle)

Returns sine of angle. Angle is speci�ed in radians; result is in radians.

162 CHAPTER 6. IC MANUAL

float cos(float angle)

Returns cosine of angle. Angle is speci�ed in radians; result is in radians.

float tan(float angle)

Returns tangent of angle. Angle is speci�ed in radians; result is in radians.

float atan(float angle)

Returns arc tangent of angle. Angle is speci�ed in radians; result is in radians.

float sqrt(float num)

Returns square root of num.

float log10(float num)

Returns logarithm of num to the base 10.

float log(float num)

Returns natural logarithm of num.

float exp10(float num)

Returns 10 to the num power.

float exp(float num)

Returns e to the num power.

(float) a ^ (float) b

Returns a to the b power.

6.12 Memory Access Functions

IC has primitives for directly examining and modifying memory contents. These

should be used with care as it would be easy to corrupt memory and crash the

system using these functions.

There should be little need to use these functions. Most interaction with system

memory should be done with arrays and/or globals.

int peek(int loc)

Returns the byte located at address loc.

int peekword(int loc)

Returns the 16-bit value located at address loc and loc+1. loc has the most

signi�cant byte, as per the 6811 16-bit addressing standard.

6.13. ERROR HANDLING 163

void poke(int loc, int byte)

Stores the 8-bit value byte at memory address loc.

void pokeword(int loc, int word)

Stores the 16-bit value word at memory addresses loc and loc+1.

void bit set(int loc, int mask)

Sets bits that are set in mask at memory address loc.

void bit clear(int loc, int mask)

Clears bits that are set in mask at memory address loc.

6.13 Error Handling

There are two types of errors that can happen when working with IC: compile-time

errors and run-time errors.

Compile-time errors occur during the compilation of the source �le. They are

indicative of mistakes in the C source code. Typical compile-time errors result from

incorrect syntax or mis-matching of data types.

Run-time errors occur while a program is running on the board. They indicate

problems with a valid C form when it is running. A simple example would be a divide-

by-zero error. Another example might be running out of stack space, if a recursive

procedure goes too deep in recursion.

These types of errors are handled di�erently, as is explained below.

6.13.1 Compile-Time Errors

When compiler errors occur, an error message is printed to the screen. All compile-

time errors must be �xed before a �le can be downloaded to the board.

6.13.2 Run-Time Errors

When a run-time error occurs, an error message is displayed on the LCD screen

indicating the error number. If the board is hooked up to ICwhen the error occurs, a

more verbose error message is printed on the terminal.

Here is a list of the run-time error codes:

164 CHAPTER 6. IC MANUAL

Error Code Description

1 no stack space for start process()

2 no process slots remaining

3 array reference out of bounds

4 stack over
ow error in running process

5 operation with invalid pointer

6
oating point under
ow

7
oating point over
ow

8
oating point divide-by-zero

9 number too small or large to convert to integer

10 tried to take square root of negative number

11 tangent of 90 degrees attempted

12 log or ln of negative number or zero

15
oating point format error in printf

16 integer divide-by-zero

6.14 Binary Programs

With the use of a customized 6811 assembler program, IC allows the use of machine

language programs within the C environment. There are two ways that machine

language programs may be incorporated:

1. Programs may be called from C as if they were C functions.

2. Programs may install themselves into the interrupt structure of the 6811, run-

ning repetitiously or when invoked due to a hardware or software interrupt.

When operating as a function, the interface between C and a binary program is

limited: a binary program must be given one integer as an argument, and will return

an integer as its return value. However, programs in a binary �le can declare any

number of global integer variables in the C environment. Also, the binary program

can use its argument as a pointer to a C data structure.

6.14.1 The Binary Source File

Special keywords in the source assembly language �le (or module) are used to establish

the following features of the binary program:

Entry point. The entry point for calls to each program de�ned in the binary �le.

6.14. BINARY PROGRAMS 165

Initialization entry point. Each �le may have one routine that is called automati-

cally upon a reset condition. (The reset conditions are explained in Section 6.4.1,

which discusses global variable initialization.) This initialization routine par-

ticularly useful for programs which will function as interrupt routines.

C variable de�nitions. Any number of two-byte C integer variables may be de-

clared within a binary �le. When the module is loaded into IC, these variables

become de�ned as globals in C.

To explain how these features work, let's look at a sample IC binary source pro-

gram, listed in Figure 6.3.

/* Sample icb file */

/* origin for module and variables */
ORG MAIN_START

/* program to return twice the argument passed to us */
subroutine_double:

ASLD
RTS

/* declaration for the variable "foo" */
variable_foo:

FDB 55

/* program to set the C variable "foo" */
subroutine_set_foo:

STD variable_foo
RTS

/* program to retrieve the variable "foo" */
subroutine_get_foo:

LDD variable_foo
RTS

/* code that runs on reset conditions */
subroutine_initialize_module:

LDD #69
STD variable_foo
RTS

Figure 6.3: Sample IC Binary Source File: testicb.asm

The �rst statement of the �le (\ORG MAIN START") declares the start of the binary

programs. This line must precede the code itself itself.

The entry point for a program to be called from C is declared with a special form

beginning with the text subroutine . In this case, the name of the binary program

166 CHAPTER 6. IC MANUAL

is double, so the label is named subroutine double. As the comment indicates, this

is a program that will double the value of the argument passed to it.

When the binary program is called from C, it is passed one integer argument. This

argument is placed in the 6811's D register (also known as the \Double Accumulator")

before the binary code is called.

The double program doubles the number in the D register. The ASLD instruction

(\Arithmetic Shift Left Double [Accumulator]") is equivalent to multiplying by 2;

hence this doubles the number in the D register.

The RTS instruction is \Return from Subroutine." All binary programs must exit

using this instruction. When a binary program exits, the value in the D register is

the return value to C. Thus, the double program doubles its C argument and returns

it to C.

Declaring Variables in Binary Files

The label variable foo is an example of a special form to declare the name and

location of a variable accessable from C. The special label pre�x \variable " is

followed the name of the variable, in this case, \foo."

This label must be immediately followed by the statement FDB <number>. This

is an assembler directive that creates a two-byte value (which is the initial value of

the variable).

Variables used by binary programs must be declared in the binary �le. These

variables then become C globals when the binary �le is loaded into C.

The next binary program in the �le is named \set foo." It performs the action of

setting the value of the variable foo, which is de�ned later in the �le. It does this by

storing the D register into the memory contents reserved for foo, and then returning.

The next binary program is named \get foo." It loads the D register from the

memory reserved for foo and then returns.

Declaring an Initialization Program

The label subroutine initialize module is a special form used to indicate the entry

point for code that should be run to initialize the binary programs. This code is run

upon standard reset conditions: program download, hardware reset, or running of the

main() function.

In the example shown, the initialization code stores the value 69 into the location

reserved for the variable foo. This then overwrites the 55 which would otherwise be

the default value for that variable.

Initialization of globals variables de�ned in an binary module is done di�erently

than globals de�ned in C. In a binary module, the globals are initialized to the value

6.14. BINARY PROGRAMS 167

 6811 interrupt vector
(dedicated RAM position)

 6.270 system
 software
interrupt driver

RTI
Return from Interrupt
 instruction

Before User Program Installation

Figure 6.4: Interrupt Structure Before User Program Installation

declared by the FDB statement only when the code is downloaded to the 6811 board

(not upon reset or running of main, like normal globals).

However, the initialization routine is run upon standard reset conditions, and can

be used to initialize globals, as this example has illustrated.

6.14.2 Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of the binary module

to install a piece of code into the interrupt structure of the 6811.

The 6811 has a number of di�erent interrupts, mostly dealing with its on-chip

hardware such as timers and counters. One of these interrupts is used by the 6.270

software to implement time-keeping and other periodic functions (such as LCD screen

management). This interrupt, dubbed the \System Interrupt," runs at 1000 Hertz.

Instead of using another 6811 interrupt to run user binary programs, additional

programs (that need to run at 1000 Hz. or less) may install themselves into the

System Interrupt. User programs would be then become part of the 1000 Hz interrupt

sequence.

This is accomplished by having the user program \intercept" the original 6811

interrupt vector that points to 6.270 interrupt code. This vector is made to point

at the user program. When user program �nishes, it jumps to the start of the 6.270

interrupt code.

168 CHAPTER 6. IC MANUAL

JMP

 6811 interrupt vector
(dedicated RAM position)

 6.270 system
 software
interrupt driver

RTI
Return from Interrupt
 instruction

 User assembly
language program

Jump instruction

After User Program Installation

Figure 6.5: Interrupt Structure After User Program Installation

6.14. BINARY PROGRAMS 169

Figure 6.4 depicts the interrupt structure before user program installation. The

6811 vector location points to system software code, which terminates in a \return

from interrupt" instruction.

Figure 6.5 illustrates the result after the user program is installed. The 6811

vector points to the user program, which exits by jumping to the system software

driver. This driver exits as before, with the RTI instruction.

Multiple user programs could be installed in this fashion. Each one would install

itself ahead of the previous one. Some standard 6.270 library functions, such as the

shaft encoder software, is implemented in this fashion.

Figure 6.6 shows an example program that installs itself into the System Interrupt.

This program toggles the signal line controlling the piezo beeper every time it is run;

since the System Interrupt runs at 1000 Hz., this program will create a continous

tone of 500 Hz.

The �rst line after the comment header includes a �le named \6811regs.asm".

This �le contains equates for all 6811 registers and interrupt vectors; most binary

programs will need at least a few of these. It is simplest to keep them all in one �le

that can be easily included. (This and other �les included by the as11 assembler are

located in the assembler's default library directory, which is /mit/6.270/lib/as11/

on the MIT Athena system.)

The subroutine initialize module declaration begins the initialization portion

of the program. The �le \ldxibase.asm" is then included. This �le contains a few

lines of 6811 assembler code that perform the function of determining the base pointer

to the 6811 interrupt vector area, and loading this pointer into the 6811 X register.

The following four lines of code install the interrupt program (beginning with

the label interrupt code start) according to the method that was illustrated in

Figure 6.5.

First, the existing interrupt pointer is fetched. As indicated by the comment, the

6811's TOC4 timer is used to implement the System Interrupt. The vector is poked

into the JMP instruction that will conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the new code. These

two steps complete the initialization sequence.

The actual interrupt code is quite short. It toggles bit 3 of the 6811's PORTA

register. The PORTA register controls the eight pins of Port A that connect to

external hardware; bit 3 is connected to the piezo beeper.

The interrupt code exits with a jump instruction. The argument for this jump is

poked in by the initialization program.

The method allows any number of programs located in separate �les to attach

themselves to the System Interrupt. Because these �les can be loaded from the C

environment, this system a�ords maximal
exibility to the user, with small overhead

in terms of code e�ciency.

170 CHAPTER 6. IC MANUAL

* icb file: "sysibeep.asm"

*
* example of code installing itself into
* SystemInt 1000 Hz interrupt
*
* Fred Martin
* Thu Oct 10 21:12:13 1991
*

#include <6811regs.asm>

ORG MAIN_START

subroutine_initialize_module:

#include <ldxibase.asm>
* X now has base pointer to interrupt vectors ($FF00 or $BF00)

* get current vector; poke such that when we finish, we go there
LDD TOC4INT,X ; SystemInt on TOC4
STD interrupt_code_exit+1

* install ourself as new vector
LDD #interrupt_code_start
STD TOC4INT,X

RTS

* interrupt program begins here
interrupt_code_start:
* frob the beeper every time called

LDAA PORTA
EORA #%00001000 ; beeper bit
STAA PORTA

interrupt_code_exit:
JMP $0000 ; this value poked in by init routine

Figure 6.6: sysibeep.asm: Binary Program that Installs into System Interrupt

6.14. BINARY PROGRAMS 171

6.14.3 The Binary Object File

The source �le for a binary program must be named with the .asm su�x. Once

the .asm �le is created, a special version of the 6811 assembler program is used to

construct the binary object code. This program creates a �le containing the assembled

machine code plus label de�nitions of entry points and C variables.

S116802005390037FD802239FC802239CC0045FD8022393C
S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4
S9030000FC
6811 assembler version 2.1 10-Aug-91
please send bugs to Randy Sargent (rsargent@athena.mit.edu)
original program by Motorola.

subroutine_double 872b *0007
subroutine_get_foo 8733 *0021
subroutine_initialize_module 8737 *0026
subroutine_set_foo 872f *0016
variable_foo 872d *0012 0017 0022 0028

Figure 6.7: Sample IC Binary Object File: testicb.icb

The program as11 ic is used to assemble the source code and create a binary

object �le. It is given the �lename of the source �le as an argument. The resulting

object �le is automatically given the su�x .icb (for IC Binary). Figure 6.7 shows

the binary object �le that is created from the testicb.asm example �le.

6.14.4 Loading an icb File

Once the .icb �le is created, it can be loaded into IC just like any other C �le. If

there are C functions that are to be used in conjunction with the binary programs,

it is customary to put them into a �le with the same name as the .icb �le, and then

use a .lis �le to loads the two �les together.

6.14.5 Passing Array Pointers to a Binary Program

A pointer to an array is a 16-bit integer address. To coerce an array pointer to an

integer, use the following form:

array ptr= (int) array;

where array ptr is an integer and array is an array.

When compiling code that performs this type of pointer conversion, IC must

be used in a special mode. Normally, IC does not allow certain types of pointer

172 CHAPTER 6. IC MANUAL

manipulation that may crash the system. To compile this type of code, use the

following invokation:

ic -wizard

Arrays are internally represented with a two-byte length value followed by the

array contents.

6.15 IC File Formats and Management

This section explains how IC deals with multiple source �les.

6.15.1 C Programs

All �les containing C code must be named with the \.c" su�x.

Loading functions from more than one C �le can be done by issuing commands

at the IC prompt to load each of the �les. For example, to load the C �les named

foo.c and bar.c:

C> load foo.c

C> load bar.c

Alternatively, the �les could be loaded with a single command:

C> load foo.c bar.c

If the �les to be loaded contain dependencies (for example, if one �le has a function

that references a variable or function de�ned in the other �le), then the second method

(multiple �le names to one load command) or the following approach must be used.

6.15.2 List Files

If the program is separated into multiple �les that are always loaded together, a \list

�le" may be created. This �le tells IC to load a set of named �les. Continuing the

previous example, a �le called gnu.lis can be created:

Listing of gnu.lis:

foo.c

bar.c

Then typing the command load gnu.lis from the C prompt would cause both

foo.c and bar.c to be loaded.

6.16. CONFIGURING IC 173

6.15.3 File and Function Management

Unloading Files

When �les are loaded into IC, they stay loaded until they are explicitly unloaded.

This is usually the functionality that is desired. If one of the program �les is being

worked on, the other ones will remain in memory so that they don't have to be

explicitly re-loaded each time the one undergoing development is reloaded.

However, suppose the �le foo.c is loaded, which contains a de�nition for the func-

tion main. Then the �le bar.c is loaded, which happens to also contain a de�nition

for main. There will be an error message, because both �les contain a main. IC will

unload bar.c, due to the error, and re-download foo.c and any other �les that are

presently loaded.

The solution is to �rst unload the �le containing the main that is not desired, and

then load the �le that contains the new main:

C> unload foo.c

C> load bar.c

6.16 Con�guring IC

IC has a multitude of command-line switches that allow control of a number of things.

Explanations for these switches can be gotten by issuing the command \ic -help".

IC stores the search path for and name of the library �les internally; theses may

be changed by executing the command \ic -config". When this command is run,

IC will prompt for a new path and library �le name, and will create a new executable

copy of itself with these changes.

174 CHAPTER 6. IC MANUAL

